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Abstract 24 

The extensive loess deposits of the Eurasian mid-latitudes provide important terrestrial records 25 

of Quaternary climatic change. As yet, however, loess records in Central Asia are poorly understood. 26 

Here we investigate the grain size and magnetic characteristics of loess from the Nilka (NLK) 27 

section in the Ili Basin of eastern Central Asia. Magnetic parameters indicate very weak pedogenesis 28 

compared with loess from other regions in Eurasia. The higher χlf values occur in primary loess, 29 

rather than in weak paleosols, and the variations in magnetic susceptibility (MS) value correlate 30 

closely with the proportions of the sand fraction. We attribute this result to high wind strength at the 31 

time of loess deposition. To explore the dust transport patterns further, we identified three grain size 32 

end members (EM1, mode size 47.5 µm; EM2, 33.6 µm; EM3, 18.9 µm) which represent distinct 33 

aerodynamic environments. EM1 and EM2 represent the grain-size fractions transported from 34 

proximal sources in short-term, near-surface suspension during dust outbreaks. EM3 appears to 35 

represent the continuous background dust fraction under non-dust storm processes. Of the three end 36 

members, EM1 is most likely the most sensitive recorder of wind strength. A lack of correlation 37 

between EM1 proportions and GISP δ18O values at the millennial scale, combined with modern 38 

weather data, suggests that Arctic polar front predominates in the Ili Basin and the Kyrgyz Tian 39 

Shan piedmont during cold phases, which leads to the dust transport and accumulation of loess 40 

deposits, while the shift of mid-latitude westerlies towards the south and north controls the patterns 41 

of precipitation/moisture variations in this region. Comparison of EM1 proportions with Northern 42 

Hemisphere summer insolation clearly illustrate local insolation-based control on wind dynamics in 43 

the region, and humdity can also influence grain size of loess over MIS3 in particular. Although, the 44 

polar front dominated wind dynamics for loess deposition in the region, the Central Asian high 45 

mountains obstructed its migration further south. Our results may also support the significance of 46 

the mid-latitude westerlies in transmitting North Atlantic climate signals to East Asia. 47 

 48 
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 51 

1 Introduction 52 

Central Eurasia experiences extremely continental climatic conditions in large part due to its 53 

position far from oceans. Arid Central Asia is therefore a sensitive recorder of past climate change 54 

due to its location in the transition zone between the Asian monsoon (Dettman et al., 2001;Cheng 55 

et al., 2012), mid-latitude westerlies (Vandenberghe et al., 2006) and North Asian polar front 56 

(Machalett et al., 2008). The relative influence and intensity of these major climate subsystems have 57 

varied across the latitudinal and longitudinal range of Central Asia through time. Thus identification 58 

of the predominant climate regimes in a certain region is a crucial precondition for tracing 59 

paleoclimatic evolution. 60 

One of the most promising potential palaeoenvironmental archives in the Central Asian region 61 

is its widespread, thick loess deposits. Loess is one of the most important archives of Quaternary 62 

climate change (Maher, 2016;Muhs, 2013). The semi-arid zone of Eurasia, between 45° and 30° 63 

N, hosts some of the thickest and most extensive loess deposits in the world. In Central Asia, the 64 

loess deposits cover the slopes of the Tian Shan mountains, from Xinjiang province of China and 65 

Kazakhstan, to Kyrgyzstan and Uzbekistan, to Tajikistan. While loess in Central Asia has 66 
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increasingly formed the focus of loess research (Dodonov et al., 2006;Feng et al., 2011;Li et al., 67 

2016c;Li et al., 2016b;Machalett et al., 2006;Smalley et al., 2006;Song et al., 2014;Song et al., 68 

2015;Song et al., 2012;Yang et al., 2006;Youn et al., 2014;Fitzsimmons et al., 2016), as yet the 69 

forcing mechanisms and the climatic conditions responsible for loess-paleosol sequences formation 70 

are ambiguous, and the paleoclimatic evolution recorded by these loess deposits in this region is not 71 

systematically understood. 72 

Evidence for temperature oscillations associated with the Greenland (Dansgarrd/Oeschger (D-73 

O) events) (Dansgaard et al., 1993) and cool phases associated with iceberg calving into the North 74 

Atlantic (Heinrich (H) events) (Bond et al., 1992) have been found in loess deposits based on the 75 

high-resolution grain-size variations ether in Chinese Loess Plateau (CLP) loess (Sun et al., 76 

2012;Porter and An, 1995) or in European loess (Antoine et al., 2009;Rousseau et al., 2007;Zeeden 77 

et al., 2016). Climatic teleconnections, especially between the North Atlantic and East Asian 78 

Monsoon regions, are likely to have been recorded within the Central Asian loess. As yet, however, 79 

the region so far largely lacks data by which the role and contribution of the central parts of the 80 

Eurasian continent, as an environmental bridge, can be elucidated. 81 

The Ili Basin of Central Asia represents a region of thick loess deposits with high potential for 82 

investigating palaeoenvironmental change for the region. The situation of the basin, surrounded to 83 

the south and north by the Tian Shan mountain range and widening to the west (Fig. 1), provides a 84 

conducive situation for loess accumulation which has resulted in the widespread and thick loess 85 

deposits in this basin. In this paper we present new data on the physical properties of a 20.4 m thick 86 

loess deposit at Nilka (NLK) in the eastern Ili Basin, focusing on grain size distributions and 87 

magnetic properties in order to investigate the enhancement mechanisms of magnetic susceptibility 88 

in NLK loess and elucidate environmental dynamics based on grain size data. 89 

2 Physical geography 90 

The Ili Basin (80° ~ 85° E and 42° 30ʹ ~ 44° 30ʹ N) straddles southeast Kazakhstan and 91 

northwest China. It is an intermontane basin opening westward towards the semi-arid Kazakhstan 92 

Gobi Desert which forms the transitional region between the steppe and full deserts of Central Asia. 93 

The Northern and Southern Tian Shan form the northern and southern boundaries to the basin (Fig. 94 

1a). The Ili River drains northwestward into terminal Lake Balkhash. 95 

This region has a semi-arid, continental climate, with a strong precipitation gradient dependent 96 

on altitude. The altitude of the basin floor is 500 ~ 780 m; the northern Tien Shan Range reaches 97 

altitudes of > 4000 m a.s.l. and the southern Tien Shan mountains range between 3000 ~7000 m 98 

a.s.l. towards the catchment divide. The mean annual precipitation (MAP) ranges between 200 mm 99 

and 500 mm on the plains, and mean annual temperature (MAT) ranges from 2.6°C to 10.4°C (Li, 100 

1991;Ye, 1999). The surface vegetation in this region is dominated by Desert Steppe and Steppe and 101 

the zonal soils comprise Sierozem, Castonozem and Chernozem. 102 

The Nilka (NLK) section (83.25°E, 43.76°N, 1253 m a.s.l) is situated on the second terrace of 103 

the right bank of the Kashi River, a tributary of the Ili River. The site is located in the eastern Ili 104 

Basin of far western China, adjoining the Northern Tian Shan to the north (Fig. 1b). 105 

 106 

Fig. 1 The location of study area and the photo of Nilka (NLK) section. 107 

 108 

3 Materials and methods 109 

3.1 Section and sampling 110 
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The NLK loess section has a thickness of 20.4 m and overlies fluvial sands and gravels (Fig.1). 111 

The profile has been exposed recently by local residents for making bricks, and recently formed the 112 

focus of a geochronological study comparing luminescence with radiocarbon methods (Song et al., 113 

2015). According to the dating results of Song et al. (2015), the NLK loess started to accumulate 114 

since ~ 70 ka B.P.. Stratigraphically and geochronologically, this is equivalent to the L1 loess unit 115 

(known as Malan loess) and S0 paleosol unit (known as Holocene Heilu soil) in the Chinese Loess 116 

Plateau, 2300 km to the east. Although largely homogeneous in appearance, two weak paleosols (at 117 

5.04 − 7 m and 15.7 − 18 m depths) were identified in the section by field observations and 118 

confirmed by our subsequent grain-size and magnetic susceptibility (MS) results. We therefore 119 

divided the NLK stratigraphy into S0, L1L1, L1S1, L1L2, L1S2 and L1L3 units (Fig. 1c). 120 

Following cleaning back of the NLK section to remove dry, weathered sediment, samples were 121 

collected at intervals of 2 cm. A total of 1026 bulk samples were prepared for measurements of 122 

physical characteristics. This study uses the more reliable optically stimulated luminescence (OSL) 123 

dating results as basis for the age model and assessment of the evolution of loess physical 124 

characteristics.  125 

3.2 Grain-size analyses 126 

Prior to grain size measurements, 0.5 g of dry bulk sample was pretreated by removal of organic 127 

matter and carbonate using H2O2 and HCl, respectively (Lu and An, 1997). Samples were then 128 

dispersed for 5 min by ultrasonification with 10 ml 10% (NaPO3)6 solution. Grain size distribution 129 

was analysed using a Malvern 2000 laser instrument at the State Key Laboratory of Loess and 130 

Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences. Particle size 131 

distribution was calculated for 100 grain size classes within a measuring range of 0.02−2000 μm. 132 

Replicate analyses indicated an analytical error of < 2% for the mean grain size.  133 

End-member unmixing of loess grain-size distributions is based on the hierarchical Bayesian 134 

model for end-member modeling analysis (BEMMA) established by Yu et al. (2016). Grain-size 135 

parameters were calculated from the analytical data with GRADISTAT (Version 4.0; Blott (2000)). 136 

2 samples (NLK1106 at 11.06 m and NLK1840 at 17.8 m) were also selected for the extraction 137 

of quartz grains according to published methods of Sun et al. (2000a). The isolated quartz grain 138 

samples (Fig. S1) then placed into the Malvern 2000 laser instrument for mineral-specific grain size 139 

measurements so that comparisons of quartz grain and bulk samples could be performed to illustrate 140 

the weathering degree of NLK loess visually. 141 

3.3 Magnetic susceptibility measurements 142 

Magnetic susceptibility was measured with a Bartington MS2 meter at the State Key laboratory 143 

of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences. 144 

Samples were oven-dried at 40°C for 24 hours. Subsamples of 10 g from each sample were then 145 

weighed for magnetic measurements. Low- (0.47 kHz) and high- (4.7 kHz) frequency magnetic 146 

susceptibility (χlf and χhf, respectively) were measured. The absolute frequency-dependent magnetic 147 

susceptibility was calculated as χfd = χlf − χhf. Frequency-dependent magnetic susceptibility was 148 

defined and calculated as χfd % = [(χlf − χhf)/ χlf] ×100%. 149 

4 Results 150 

4.1 Magnetic susceptibility variations 151 

Both magnetic susceptibility (MS) data and stratigraphy show a close correspondence 152 

throughout the NLK section. We observe higher MS values within primary loess and lower values 153 

within paleosols. The exception to this trend is the modern (S0) soil in which high MS values are 154 
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presented (Fig. 2). 155 

 156 

Fig. 2 Lithology and magnetic susceptibility characteristics (χlf, χfd and χfd%) of the NLK section. 157 

 158 

The low-frequency magnetic susceptibility (χlf) values of the S0 unit are higher than for the L1 159 

unit, with an average of 98.13 × 10-8m3kg-1. The χlf values of the L1L1 unit vary from 56.5 − 103.9 160 

× 10-8m3kg-1, with a decreasing trend down-profile. The χlf value abruptly decreases at c. 5 m, with 161 

generally lower values in the L1S1 unit, averaging 62.58 × 10-8m3kg-1. χlf in the L1L2 unit gradually 162 

increases down profile, with significant fluctuations in the lower part; χlf values vary from 67 − 163 

102.55 × 10-8m3kg-1. Lower χlf values are observed in L1S1 unit with an average value of 57.99 × 164 

10-8m3kg-1. In the L1L3 unit, the χlf values vary with greater amplitude around an average value of 165 

68.74 × 10-8m3kg-1. 166 

Absolute frequency-dependent magnetic susceptibility (χfd) values likewise vary with 167 

stratigraphy. The S0 unit yields the highest χfd value. The L1 unit is characterized by relatively 168 

consistent and lower χfd values. Frequency-dependent magnetic susceptibility (χfd%) yields the same 169 

trend as χfd, although χfd% values clearly increase in the central part of L1S2.  170 

4.2 Mixing model of loess grain-size distributions 171 

The mean grain-size distribution, and variation range of volume frequencies for each grain-172 

size class in the dataset, are presented in Fig. 3a. The overall grain-size frequency curve shows a 173 

unimodal pattern, if slightly skewed towards the coarser side, with the primary mode ranging from 174 

11.9 µm to 47.5 µm. An additional small grain size peak occurs at c. 0.4 – 2 µm. Three unmixed 175 

end members were identified (Fig. S2), yielding fine-skewed grain-size distributions with clearly 176 

defined modes of 47.5 µm (EM1), 33.6 µm (EM2) and 18.9 µm (EM3) (Fig. 3b).  177 

 178 

Fig. 3 End-member modelling results of the grain-size dataset of the NLK section. (a) Mean size 179 

distribution and range of volume frequency for each size class. (b) Modelled end-members 180 

according to the three-end-member model (modal size: ~ 47.5 µm, ~ 33.6 µm and ~ 18.9 µm). 181 

Size limits of clay, silt and sand fractions determined by laser particle sizer are differ from those 182 

derived by the pipette method. The upper limits of grain-size classes used here are at 4.6/5.5 µm 183 

for clay, 26 µm for fine silt, and 52 µm for coarse silt, as previously published by Konert and 184 

Vandenberghe (1997). Sand is designated for particle sizes > 52 µm. Therefore, EM1 and EM2 185 

correspond to coarse silt and EM3 to fine silt. 186 

 187 

Fig. 4 Proportional contributions of the three end-members in the NLK section. 188 

 189 

The proportional distribution of the end members down the section is shown in Fig. 4. In the 190 

primary loess units (L1L1, L1L2 and L1L3), the deposits are dominated by the coarser silt EM1 and 191 

EM2, while higher proportions of fine silt EM3 are preferentially observed within the soil horizons 192 

(S0, L1S1 and L1S2). EM1 displays high frequency, large amplitude fluctuations down the profile, 193 

varying between 0.09 – 0.72, and clearly dominates the primary loess units and occurs in low 194 

proportions in the soil units (Fig. 4). EM2 shows a similar trend to EM1, but with less variability 195 

down profile. Proportions of EM2 range between 0.11 − 0.66 with minimal fluctuations within 196 

individual units, and proportions decrease significantly in the soil units S0 and L1S2. Proportions 197 

of EM3 remain consistently low within the primary loess units, and increase to 0.46 and 0.8 within 198 
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the soil horizons S0 and L1S2 respectively. 199 

5 Discussion 200 

5.1 Likely mechanisms for the enhancement of magnetic susceptibility in Ili Basin loess  201 

Magnetic susceptibility (MS) in loess is due to the concentration of iron-bearing magnetic 202 

minerals within the sediment (Hambach et al., 2009;Buggle et al., 2014;Liu et al., 1999;Liu et al., 203 

1994;Song et al., 2010). At the broadest level, this varies between primary loess and soil horizons, 204 

with soils generally experiencing an enrichment of magnetic minerals, and corresponding higher 205 

MS values, than primary loess deposits (Zhou et al., 1990;Maher and Thompson, 1992;Heller and 206 

Evans, 1995;Antoine et al., 1999;Heller and Liu, 1984;Ding et al., 2002;Forster and Heller, 207 

1997;Buggle et al., 2009a). The formation in situ of ˂  100 nm magnetite or maghemite grains during 208 

pedogenesis is the most widely accepted interpretation for the mechanisms of loess MS 209 

enhancement (Nie et al., 2016). Increased precipitation is conducive to chemical weathering and 210 

biological processes during pedogenesis. Song et al. (2010) further argued that strong pedogenesis 211 

under warm, humid climatic conditions produces new magnetic minerals. The contrast between high 212 

and low MS in paleosols and primary loess, respectively, has formed the basis for the stratigraphic 213 

differentiation of loess deposits. This principle has provided the foundation for large-scale 214 

correlations between loess deposits (Marković et al., 2015;Yang et al., 2006;Ding et al., 215 

2002;Marković et al., 2012;Buggle et al., 2009b;Sun et al., 2006a) and with global climatic 216 

oscillations (Bloemendal et al., 1995;An et al., 1991;Kukla et al., 1988;Heller and Liu, 1986;Heller 217 

and Liu, 1982), initially in the Chinese Loess Plateau deposits and increasingly worldwide. 218 

The main MS variations in the NLK loess sequence, with the exception of the S0 unit, however, 219 

do not occur directly in association with pedogenesis (Fig. 2). A similar case also occurs in the L1 220 

loess layers in TLD, ZKT and AXK sections, also in the Ili valley (Fig. 1) (Jia et al., 2010;Jia et al., 221 

2012;Song et al., 2010). The lack of a straightforward correlation between MS, loess and paleosols 222 

indicates that an alternative explanation for this variability must be sought. Proposed mechanisms 223 

of variations in loess magnetic susceptibility include, in addition to pedogenesis (Zhou et al., 224 

1990;Maher, 1998), the dilution of relatively coarse silt with a low susceptibility (Kukla and An, 225 

1989), sediment compression and carbonate leaching (Heller and Liu, 1984), and decomposition of 226 

plant residues (Meng et al., 1997). 227 

Since alternative mechanisms may have played a role in the magnetization of the Ili Basin loess 228 

deposits, we investigated different aspects of environmental magnetic properties in order to 229 

investigate to what degree pedogenesis or the alternative mechanisms played the more critical role 230 

in this region. 231 

Absolute frequency-dependent susceptibility (χfd) determines the concentration of magnetic 232 

particles within a small grain size range across the superparamagnetic (SP)/stable single domain 233 

(SSD) boundary (Liu et al., 2012) (magnetite, ˂ ~100 nm; maghemite, ˂ ~20 µm). Particles with 234 

this grain size are considered to form in situ within soils during pedogenesis (Maher and Taylor, 235 

1988;Zhou et al., 1990), and therefore χfd can serve as a direct proxy for pedogenesis (Heller et al., 236 

1993;Maher and Thompson, 1995;Liu et al., 2007;Buggle et al., 2014). In the NLK section, χfd 237 

yields consistently low values throughout the sequence and indicates no clear strong pedogenesis 238 

even in the weakly developed paleosol layers (L1S1 and L1S2). Comparison between χlf vs. χfd 239 

down profile shows no correlation between MS and SP particles (Fig, S3c). These results suggest 240 

that SP particles played only a minor role in MS enhancement in the NLK loess. 241 

Frequency-dependent magnetic susceptibility (χfd%) is used as a proxy to determine the 242 
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contribution of SP particles to MS (Zhou et al., 1990;Liu et al., 1992). At NLK, however, we observe 243 

consistently low χfd% values in both loess and paleosol layers, with a slight increase only in the 244 

L1S1 paleosol. This observation reinforces our interpretation that the content of SP particles is very 245 

low, and consequently that their contribution to MS can be ignored. 246 

The low proportions of SP particles in the NLK loess imply that the pseudo-single-domain 247 

(PSD) and multi-domain (MD) magnetic grains, rather than SP grains, make the more important 248 

contribution to magnetic enhancement of NLK loess. Since PSD and MD magnetic minerals are 249 

difficult to produce during pedogenesis (Song et al., 2010), such minerals are more likely to be 250 

detrital in nature, deriving from the original protolith. 251 

 252 

Fig. 5 Comparison of different grain size fractions of NLK loess with χlf (limits of grain-size classes 253 

after Konert and Vandenberghe (1997) ). 254 

 255 

In some cases, the moist conditions typically conducive to pedogenesis, including high 256 

precipitation and rising groundwater levels, may result in the weathering, destruction and 257 

dissolution of the magnetic minerals maghemite and magnetite (Nawrocki et al., 1996;Cornell and 258 

Schwertmann, 2003;Maher, 1998;Grimley and Arruda, 2007;Hu et al., 2009b;Hu et al., 259 

2009a;Ghafarpour et al., 2016). In such cases, a negative relationship between magnetic 260 

susceptibility and pedogenesis can develop, in contrast to the classical situation whereby χfd is 261 

enhanced. At NLK, however, we observe no textures caused by groundwater fluctuations, and yet 262 

very weak pedogenesis was reflected by χfd. We therefore exclude groundwater fluctuations and 263 

high levels of precipitation as a factor in our MS characteristics at NLK. 264 

Increased concentrations of coarser-grained detrital magnetic minerals, resulting from periods 265 

of increased wind strength, may enhance overall MS values. In the wind velocity/vigor model (also 266 

known as the Alaskan or Siberian model), wind strength affects magnetic susceptibility values of 267 

loess through the physical sorting of magnetic grains (Beget and Hawkins, 1989). The influence of 268 

this process on MS values in loess can be assessed by investigating the correlation between MS and 269 

coarser (silt or sand) and finer clay percentages (Fig. S3). At NLK, low MS values in the S0 soil 270 

between 0 – 0.5 m correlate positively with clay percentage variations (Fig. S3a), while higher MS 271 

values at depths greater than > 0.5 m correlate closely with increased sand concentrations (Fig. S3b). 272 

We therefore propose that MS enhancement at NLK is primarily driven by increased concentrations 273 

of sand-sized detrital magnetic minerals, which increase during periods of stronger winds. The 274 

dilution effect of coarse particles with low susceptibility was excluded. 275 

In the case of NLK, the reduced color contrast (Fig. 1) between loess and paleosol layers 276 

implies moderate climate fluctuations between loess deposition and pedogenesis due to generally 277 

more arid conditions than typically experienced in loess regions. This prevents the efficient 278 

production of SP grains (Fig. 2). Wind strength can therefore be regarded as a main factor for MS 279 

variations since last glacial. And in turn, MS may be able to indicate stronger wind during dust 280 

storms. 281 

5.2 Genetic interpretations of end members in loess grain size 282 

In order to understand the atmospheric dynamic pattern during loess deposition further, we 283 

conducted unmixing of grain-size distributions. 284 

Recent years have seen increasing statistical analysis of loess grain-size to identify 285 

subpopulations within bulk samples (Prins, 2007;Prins et al., 2007;Qin et al., 2005;Sun et al., 286 
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2002;Vriend et al., 2011;Vandenberghe, 2013;Sun, 2004). From these statistical datasets, the 287 

different end members can be interpreted to infer distinct atmospheric transport mechanisms, modes 288 

and travel distances (Ujvari et al., 2016). In some cases, the end-member approach has been used to 289 

identify variation in geological context, or source area (Prins et al., 2007). We investigated the utility 290 

of this approach to the Ili Basin loess at NLK by unmixing grain-size distributions with BEMMA 291 

(Yu et al., 2016). As shown in Fig. S2, we generated a mixing model consisting of three end 292 

members.  293 

Fine sand (‘sediment type 1.a’ in Vandenberghe (2013)) is a typical component of loess deposits 294 

near to or overlying river terraces. Although the NLK section lies on the second terrace of the Kashi 295 

River and therefore closer to a potential source of coarser grained material, the fine-sand end 296 

member is completely absent. Modal grain sizes in this range (c. 75 um) are common in loess along 297 

the Huang Shui and Yellow Rivers in China (Vriend and Prins, 2005;Vandenberghe et al., 2006;Prins 298 

et al., 2009), the Danube and Tisza rivers in Serbia (Bokhorst et al., 2011), and the Mississippi valley 299 

in the USA (Jacobs et al., 2011). This fraction is generally interpreted to originate from proximal 300 

sources, and the grain size of the available source material plays a more important role in 301 

determining the grain-size characteristics of this fraction than wind energy (Vandenberghe, 2013). 302 

The lack of fine sand at NLK, despite its proximity to the Kashi River, may be attributed to 1) its 303 

location in the upper reaches of the river (Fig. 1b), in a region which lacks available stocks of fine 304 

sand, 2) the V-shaped nature of the channel which is not conducive to aeolian transport of bank 305 

deposits, and 3) the relatively high altitude of NLK within the basin which inhibits transport and 306 

deposition of coarser sediment grains (Vandenberghe, 2013). 307 

The three members (Fig. 3b) identified at NLK correspond to coarse silt (EM1 and EM2) and 308 

fine silt (EM3). Each likely represent different kinds of depositional processes which operated 309 

throughout the accumulation of the deposit at NLK. Here we focus on the implications of these three 310 

end members for understanding past environmental conditions responsible for loess-paleosol 311 

sequences formation. 312 

EM1 has a modal grain size of 47.5 µm (Fig. 3b), which approximately corresponds to the 313 

‘subgroup 1.b.1’ of Vandenberghe (2013). The mode is similar to end members identified in loess 314 

from the Chinese Loess Plateau (CLP) and the north-eastern Tibetan Plateau (NE-TP) (EM-2: 44 315 

µm) (Vriend et al., 2011). The size of this component is unlikely to be due to longer distance 316 

transport. Therefore it is inferred that EM1 is derived from shorter distance transport of suspended 317 

load (Vriend et al., 2011;Vandenberghe et al., 2006). Coarser particles with grain-size >20 um rarely 318 

reach suspension above the near surface level (0 − 200 m above the ground). When entrained by 319 

wind, they do not remain in suspension for long enough to travel long distances (Tsoar and Pye, 320 

1987;Pye, 1987). Since the average grain-size of EM1 is 26.74 µm (calculated after Folk and Ward 321 

(1957)), we infer that this fraction was transported mainly in short-term suspension episodes at 322 

lower elevations by surface winds, and deposited short distances downwind of the source. These 323 

short-term suspension episodes may correspond to spring-summer dust storms, as demonstrated by 324 

present-day dust measurements on the CLP which detected a similar modal grain-size during these 325 

events (Sun et al 2003). 326 

EM2 represents a mode at 33.6 µm (Fig. 3b). It lies towards the finer end of the range of 327 

‘subgroup 1.b.2’ (Vandenberghe, 2013). Comparable loess of the same grain size has been identified 328 

in loess from the northern Qilian Shan/Hexi Corridor (EM-2: 33 µm), which was also interpreted as 329 

depositing from short-term suspension (Nottebaum et al., 2015). Loess of this grain size has been 330 
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attributed to dust fallout (Pye, 1995;Muhs and Bettis, 2003) and from low-altitude suspension clouds 331 

(Sun et al., 2003), as measured from modern depositional events. This fraction requires less wind 332 

energy than EM1, is transported further, is more widely distributed, and therefore comprises a higher 333 

proportion of the distally deposited population in loess generally (Vandenberghe, 2013). We propose 334 

that EM2 was transported mainly in short-term, near-surface suspension during dust storms, and 335 

that wind strength controlled the relative proportions of EM1 and EM2 through time (see the mirror 336 

image relationships over millennial scales in Fig. 4), which may implied that both EM1 and EM2 337 

have a same origin. 338 

The grain-size distribution of EM3 has a modal peak at 18.9 µm (Fig. 3b). This population 339 

belongs to ‘subgroup 1.c.1’ in Vandenberghe (2013). This population is also widespread in loess 340 

from the CLP and northeastern Tibetan Plateau (Prins et al., 2007;Prins, 2007), and the Danube 341 

Basin loess of Europe (Bokhorst et al., 2011;Varga, 2011), particularly in loess of interglacial age 342 

(Vriend, 2007). There is as yet no consensus as to the transport processes responsible for this grain 343 

size population. On the one hand, researchers have suggested that grains of this size can be lifted by 344 

strong vertical air movement and subsequently incorporated into the high-level westerly air streams 345 

(Pye, 1995;Pye and Zhou, 1989). This process would link EM3 with long-term suspension transport 346 

driven by high-level Westerlies (Prins et al., 2007;Vriend et al., 2011;Nottebaum et al., 347 

2014;Vandenberghe, 2013). Conversely, Zhang et al. (1999) argued that EM3 derives from “non-348 

dust storm processes” associated with north-westerly surface winds. We argue for the latter on the 349 

basis that the EM3 modal grain size from the CLP and northeast Tibetan Plateau is coarser (Vriend 350 

et al., 2011) than EM3 at NLK in the Ili Valley, which is located further west. If EM3 was transported 351 

by high-level westerlies, then one would expect either no significant change (Rea et al., 1985;Rea 352 

and Hovan, 1995), or a decrease in grain size from west to east concomitant with wind direction. 353 

Furthermore, with mathematical fitting, Sun et al. (2004) related a fine component (2 – 8 µm) to 354 

high-altitude westerlies. This fine component is comparable to ‘subgroup 1.c.2’ of Vandenberghe 355 

(2013), which is not consistent with the modal size of EM3. Observations of modern aeolian 356 

processes at the southern margins of the Tarim Basin indicate that fine grain sizes similar to EM3 357 

(8 − 15um) are deposited by settling during low velocity wind conditions (Lin et al., 2016). We 358 

therefore infer the EM3 modal peak to derive from low altitude non-dust storm processes.  359 

Other possibilities for the deposition of the fine particles include the incorporation into silt- or 360 

sand-sized aggregates which can be transported by a range of wind velocities including dust storms 361 

(Qiang et al., 2010;Pye, 1995;Derbyshire et al., 1998;Mason et al., 2003). For example, Ujvari et al. 362 

(2016) indicated that the ~ 1 – 20 µm fractions are affected by aggregation by comparison between 363 

minimally and fully dispersed grain size distributions of loess samples from southern Hungary. 364 

Under higher wind velocity conditions, the aggregate model should co-vary with the coarser EM1 365 

particles which were transported by surface winds during dust storms. However, since this model is 366 

unlikely to hold for EM3 particles (Fig. 4), the aggregate model is not thought to be responsible for 367 

the presence of grain sizes corresponding to EM3. 368 

In addition, post-depositional processes may also influence grain size distribution. In large part 369 

this occurs by chemical weathering which produces very fine silt and clay minerals (Xiao et al., 370 

1995;Wang et al., 2006;Hao et al., 2008). In particular, quartz grains are more weathering resistant 371 

and remain largely unaltered during the post-depositional processes. Consequently, quartz mineral 372 

grain size may be used as a more reliable proxy indicator of winter monsoon strength than other 373 

components (Sun et al., 2006b;Sun et al., 2000b;Xiao et al., 1995). 374 
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Figure. 6a shows the grain size distribution curves of quartz grains isolated from primary loess 375 

(yellow) and paleosol (red) samples. The quartz modal grain size is finer in the paleosol than in the 376 

primary loess unit. From this we can deduce that wind strength was weaker during pedogenesis, and 377 

stronger during periods of primary loess deposition. The grain size distributions of bulk samples 378 

display similar characteristics with those of quartz samples mentioned above (Fig. 6b), whereby soil 379 

unit modal peaks (red and orange) are finer than those for primary loess (blue and green). Therefore, 380 

we argue that wind strength, rather than the post-depositional pedogenesis, has the greatest influence 381 

on grain size distribution at NLK, and that EM3 was also not produced by chemical weathering. 382 

 383 

Fig. 6 Comparison of grain size distribution between purified quartz subsamples of paleosol and 384 

primary loess (a), and between bulk samples of paleosols and primary loess (b). Comparison of 385 

the grain size distribution between EM3 and samples from weak paleosol units (c). 386 

 387 

The relative proportions of the end members down profile can yield further information about 388 

temporal variability in wind dynamics. The fairly consistent proportions of EM3 within the loess 389 

units indicate it to represent continuous background dust through time (Vandenberghe, 2013). 390 

Proportions of EM1 and EM2 decrease noticeably within paleosol units relative to EM3 (Fig. 4). 391 

This indicates that variations in proportions of EM3 are mainly driven by variability of EM1 and 392 

EM2 (Vriend et al., 2011), but also that a background sedimentation of EM3 was dominant during 393 

weak pedogenesis (Fig. 6c). This characteristic is comparable with observations from the CLP 394 

(Zhang et al., 1999). 395 

In addition, small peaks at c. 0.8 µm are also observed in the grain-size distribution curves of 396 

all three end members. The generation of finest grain peaks may be due to post-depositional 397 

pedogenesis (Sun, 2006), especially for the particles with grain-size smaller than 2 µm (Bronger 398 

and Heinkele, 1990;Sun, 2006). Nevertheless, post-depositional weathering is unlikely to have had 399 

a significant influence on the populations of EM1, EM2 or EM3, since the dominant modal peaks 400 

are much coarser. Other potential sources include transportation as aggregates or by the finest grains 401 

adhering to coarser particles during transport. Regardless of cause, these particles are unlikely to 402 

yield meaningful information about variability in westerly wind system strength since they do not 403 

yield a clear independent end member peak. 404 

5.3 Aeolian dust dynamics in eastern Central Asia: links to atmospheric systems 405 

Variations in grain size through time at NLK were largely driven by changes in wind strength, 406 

without substantial influence of post-depositional pedogenesis. At NLK, grain size therefore is an 407 

indicator for response to the atmospheric system. 408 

The three end members are interpreted to represent different depositional processes which 409 

operated throughout the accumulation of the deposit. The finer EM3 is interpreted to represent 410 

constant background dust, which continued to accumulate throughout periods of relative stability 411 

and pedogenesis. The coarser populations, EM1 and EM2, were transported by low-level winds 412 

during major dust storms. EM1 is most likely the most sensitive recorder of wind intensity, since 413 

EM2 is less sensitive to wind speeds than EM1 by observation of variations in EM2 proportions 414 

throughout L1S1 and L1L2 (Fig. 4). 415 

 416 

Fig. 7 Comparison between EM1 grain size variability with the timing of glacial advances in the 417 

Tian Shan (Koppes et al. 2008; Owen and Dortch, 2014); stable oxygen isotope variations from the 418 
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Greenland ice cores (Rasmussen et al., 2014) and insolation values at 45°N (Berger and Loutre, 419 

1991). 420 

 421 

From the OSL data (Song et al., 2015), we used linear regression (Stevens et al., 2016) to 422 

construct age–depth relationships over intervals of visually similar sedimentation rate (Fig. S4 and 423 

Table S1). Based on the independent chronology sequences, we assess the degree of correlation 424 

between wind strength variability in the Ili Valley (NLK), as represented by the proportions of EM1, 425 

the stable oxygen isotope record from the Greenland ice cores representing North Atlantic 426 

paleoclimate (Rasmussen et al., 2014), insolation values at 45°N (Berger and Loutre, 1991) and 427 

glacial advances in the Tian Shan (Owen and Dortch, 2014;Koppes et al., 2008) (Fig. 7). 428 

In Fig. 7, EM1 occurs in larger proportions during mid-MIS3, with a higher rate of sedimentary 429 

accumulation. Glaciers expanded during early- and late-MIS3 (Owen and Dortch, 2014). Generally 430 

dust is assumed to be generated, and deposited, during dry-windy glacial conditions, while 431 

interglacial conditions were comparatively wetter and more conductive to pedogenesis (Stevens et 432 

al., 2013;Sun et al., 2010;Ding et al., 2002;Dodonov and Baiguzina, 1995). By contrast, a seesaw 433 

relationship between rapid loess deposition and glacial expansion was observed during MIS3 from 434 

our results (Fig. 7), a model that has also been noticed by Youn et al. (2014). The mass accumulation 435 

rate (MAR) of loess is good proxy for aridity (Pye, 1995), while moisture availability is the 436 

dominant factor controlling glacier growth in Central Asia, especially for glaciers in the Tian Shan 437 

(Zech, 2012;Koppes et al., 2008). We infer, therefore, that moisture had an important impact on 438 

accumulation of dust in the study area over MIS3 in particular. 439 

Central Asia is variably influenced by the Asian monsoon from the south (Dettman et al., 440 

2001;Cheng et al., 2012), the mid-latitude westerlies (Vandenberghe et al., 2006), the Siberian high-441 

pressure systems from the northeast (Youn et al., 2014), and the polar front from the north 442 

(Machalett et al., 2008). However, by virtue of its geographical position, most of these climate 443 

influences can be excluded for the Ili Valley since it is sheltered to the northeast, east and south.. 444 

The Asian high mountains largely inhibit the intrusion of Asian (Indian and East Asian) monsoons 445 

to the region, and the influence of the Siberian High (An, 2000) has been shown to decrease 446 

westward from the CLP (Vandenberghe et al., 2006).  447 

Modern satellite data indicates that dust storm development in Ili river valley is closely linked 448 

with southward-moving high-latitude air masses (Ye et al., 2003). Karger et al. (2016) provided a 449 

detailed picture of the westerlies for the Ili Basin, in which a rain belt gradually migrated towards 450 

the south and north in autumn and summer, respectively. According to this scenario, enhanced 451 

evaporation coupled with strengthened westerly winds would bring more humid and warm air 452 

masses to Arid Central Asia (ACA) during the Holocene (Zhang et al., 2016). Therefore, based on 453 

our grain-size observations, we argue that the Arctic polar front, intruding southward in the winter 454 

and retracting northward in summer (Machalett et al., 2008), most likely increased the frequency 455 

and strength of cyclonic storms, leading to dust transport and the accumulation of loess deposits 456 

during cold phases when it predominated in the Ili Basin and along the Kyrgyz Tian Shan piedmont. 457 

While the mid-latitude westerlies increasingly influenced the climate in this region as the climate 458 

became warmer when the polar front shifted northward, and controlled the patterns of moisture 459 

variations (Huang et al., 2015;Li et al., 2011). 460 

Comparison of EM1 proportions with variability in June insolation at 45ºN shows a distinct 461 

correlative relationship on the orbital timescale (Fig. 7), which indicates local insolation-based 462 
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control on wind dynamics. When the insolation values increases, the rising of temperature, as a 463 

result, enhances the frequency or strength of cyclonic storms, resulting in higher sedimentary rates 464 

or higher coarse-grain proportions (Fig. 7). However, EM1 proportions exhibit more substantial 465 

fluctuations than may be attributed to insolation values during the mid- and late-MIS3. We ascribe 466 

that to the humidity variations in the study area. In the early-MIS 3, increased moistures due to 467 

migration of westerlies towards the north were conducive to vegetation growth in source areas, 468 

which reduced sediment entrainment and resulted in less contribution of coarse grains to loess site, 469 

though glacial grinding of rocks in the high mountains could produce amount of fine-grained 470 

materials (Smalley, 1995;Li et al., 2016a;Fitzsimmons et al., 2016). Whereas arid environment in 471 

the mid-MIS 3, observed by a lack of glacial advance in Tian Shan (Fig. 7) and also reflected by the 472 

increased MAR (Fig. 7) (Pye, 1995), likely made these sediments with coarser grain size produced 473 

in the early-MIS 3 available as the source materials for NLK loess, as the case in the north-eastern 474 

Tibetan Plateau (Vriend et al., 2011). 475 

Over millennial scales, our grain-size proxy data do not correlate strongly with abrupt events, 476 

such as H1, H2, H3 and H5, identified from the North Atlantic records (Fig. 7). Some of the peaks 477 

in EM1 curve correspond to valleys in GISP δ18O curve (black arrows in Fig. 7), yet many do not. 478 

Grain size studies of the Darai Kalon loess section in Tajikistan, 1200 km to the southwest of 479 

NLK, inferred a strong influence from the westerlies resulting in transport of the North Atlantic 480 

signal to the East Asia (Vandenberghe et al., 2006;Porter and An, 1995;Sun et al., 2012). Darai 481 

Kalon is, however, located in a region where the mid-latitude westerlies clearly have a much 482 

stronger influence. Our results from the Ili Basin contradict those of Vandenberghe et al. (2006), 483 

which suggest that the mid-latitude westerlies probably did not predominate north of the Kyrgyz 484 

Tian Shan. In this case, the high mountains in Central Asia most likely obstructed the migration of 485 

the Asiatic polar front further south towards Tajikistan where those data were derived, thereby 486 

resulting in a stronger westerlies signal at Darai Kalon than at NLK. 487 

Our results also contradict those of Yang and Ding (2014), who proposed that millennial-scale 488 

North Atlantic climate signals might have been transmitted to the Siberian High via the Barents and 489 

Kara Sea ice sheets, and then propagated eastwards to the Chinese Loess Plateau via the winter 490 

monsoon system. In our case, the influence from northern climate subsystems such as the Siberian 491 

High or polar front appear not to have transmitted millennial-scale North Atlantic climatic events, 492 

maybe supporting the significance of the westerlies in transmitting North Atlantic climate signals 493 

to East Asia. 494 

Conclusion 495 

In this study, a paleoenvironmental record for the last glacial from the Nilka (NLK) loess 496 

section in Ili Basin was provided. The magnetic properties of the loess indicate that no strong 497 

pedogenesis occurred in this section, even in the paleosol units. Variations in magnetic susceptibility 498 

(MS) value closely correlate with the proportions of sand fraction, and wind strength is mainly 499 

responsible for those variations since the last glacial. 500 

With the unmixing of grain size distributions, three end members were distinguished: EM1 501 

(mode size at 47.5 µm), EM2 (33.6 µm) and EM3 (18.9 µm). They are indicative of different kinds 502 

of depositional processes which operated throughout the accumulation of the loess deposit at NLK. 503 

EM1 and EM2 represented the grain-size fractions transported from proximal sources in short-term, 504 

near-surface suspension during dust outbreaks. They may have the same origin. While wind strength 505 

controls relative proportions, EM1 is most likely the most sensitive recorder of wind strength. EM3 506 
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represents continuous background dust under the non-dust storm processes.  507 

The Arctic polar front predominates in the Ili Basin and the Kyrgyz Tian Shan piedmont during 508 

cold phases, which leads to the dust transport and increased accumulation of loess deposits, while 509 

the shift of mid-latitude westerlies towards the south and north controlled the patterns of 510 

precipitation/moisture variations in this region. On the orbital scale, the local insolation-based 511 

control has an important impact on wind dynamics directly related to accumulation of loess, and 512 

moisture can may also influence grain size of loess in the study area over MIS3 in particular. 513 

Although, the polar front dominated wind dynamics for loess deposition in the Ili Basin and the 514 

Kyrgyz Tian Shan, the Central Asian high mountains obstructed its migration further south. Our 515 

results may also support the significance of the mid-latitude westerlies in transmitting North Atlantic 516 

climate signals to East Asia. 517 
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